Pre-Synaptic Inhibition of Afferent Feedback in the Macaque Spinal Cord Does Not Modulate with Cycles of Peripheral Oscillations Around 10 Hz
نویسندگان
چکیده
Spinal interneurons are partially phase-locked to physiological tremor around 10 Hz. The phase of spinal interneuron activity is approximately opposite to descending drive to motoneurons, leading to partial phase cancellation and tremor reduction. Pre-synaptic inhibition of afferent feedback modulates during voluntary movements, but it is not known whether it tracks more rapid fluctuations in motor output such as during tremor. In this study, dorsal root potentials (DRPs) were recorded from the C8 and T1 roots in two macaque monkeys following intra-spinal micro-stimulation (random inter-stimulus interval 1.5-2.5 s, 30-100 μA), whilst the animals performed an index finger flexion task which elicited peripheral oscillations around 10 Hz. Forty one responses were identified with latency < 5 ms; these were narrow (mean width 0.59 ms), and likely resulted from antidromic activation of afferents following stimulation near terminals. Significant modulation during task performance occurred in 16/41 responses, reflecting terminal excitability changes generated by pre-synaptic inhibition (Wall's excitability test). Stimuli falling during large-amplitude 8-12 Hz oscillations in finger acceleration were extracted, and sub-averages of DRPs constructed for stimuli delivered at different oscillation phases. Although some apparent phase-dependent modulation was seen, this was not above the level expected by chance. We conclude that, although terminal excitability reflecting pre-synaptic inhibition of afferents modulates over the timescale of a voluntary movement, it does not follow more rapid changes in motor output. This suggests that pre-synaptic inhibition is not part of the spinal systems for tremor reduction described previously, and that it plays a role in overall-but not moment-by-moment-regulation of feedback gain.
منابع مشابه
Title: Pre-synaptic modulation of afferent feedback in the macaque spinal cord does not modulate with cycles of peripheral oscillations around 10 Hz Running title: Lack of rapid modulation in pre-synaptic inhibition Authors:
CC-BY-NC-ND 4.0 International license peer-reviewed) is the author/funder. It is made available under a The copyright holder for this preprint (which was not. KEY POINTS Presynaptic inhibition of afferent feedback is known to modulate during voluntary movements Spinal interneuron circuits have previously been demonstrated to modulate activity with the phase of ~10 Hz physiological tremor, i...
متن کاملEvaluation of H-reflex recruitment curve after application of TENS on the desensitised skin of vertebral column
Electrical stimulation of neuromuscular system has been used in a variety of research and therapeutic applications. Although tri-polar transcutaneous electrical stimulation (TENS) is commonly used to change motoneuron excitabi1ity, but the effect of TENS on synaptic activities through dorsal column stimulation or cutaneous pathways is unknown. So, the aim of this research study was to determine...
متن کاملGABA-mediated membrane oscillations as coincidence detectors for enhancing synaptic efficacy in the developing hippocampus
Spontaneously occurring neuronal oscillations constitute a hallmark of developmental networks. They have been observed in the retina, neocortex, hippocampus, thalamus and spinal cord. In the immature hippocampus the so-called ‘giant depolarizing potentials’ (GDPs) are network-driven membrane oscillations characterized by recurrent membrane depolarization with superimposed fast action potentials...
متن کاملGABA-mediated membrane oscillations as coincidence detectors for enhancing synaptic efficacy in the developing hippocampus
Spontaneously occurring neuronal oscillations constitute a hallmark of developmental networks. They have been observed in the retina, neocortex, hippocampus, thalamus and spinal cord. In the immature hippocampus the so-called ‘giant depolarizing potentials’ (GDPs) are network-driven membrane oscillations characterized by recurrent membrane depolarization with superimposed fast action potentials...
متن کاملEarly postnatal development of GABAergic presynaptic inhibition of Ia proprioceptive afferent connections in mouse spinal cord.
Sensory feedback is critical for normal locomotion and adaptation to external perturbations during movement. Feedback provided by group Ia afferents influences motor output both directly through monosynaptic connections and indirectly through spinal interneuronal circuits. For example, the circuit responsible for reciprocal inhibition, which acts to prevent co-contraction of antagonist flexor a...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره 9 شماره
صفحات -
تاریخ انتشار 2015